Finite SAGBI bases for polynomial invariants of conjugates of alternating groups

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite SAGBI bases for polynomial invariants of conjugates of alternating groups

It is well-known, that the ring C[X1, . . . , Xn]n of polynomial invariants of the alternating group An has no finite SAGBI basis with respect to the lexicographical order for any number of variables n ≥ 3. This note proves the existence of a nonsingular matrix δn ∈ GL(n,C) such that the ring of polynomial invariants C[X1, . . . ,Xn] δn n , where An n denotes the conjugate of An with respect to...

متن کامل

Sagbi Bases in Rings of Multiplicative Invariants

Let k be a field and G be a finite subgroup of GLn(Z). We show that the ring of multiplicative invariants k[x±1 1 , . . . , x ±1 n ] G has a finite SAGBI basis if and only if G is generated by reflections.

متن کامل

Polynomial Invariants of Finite Groups a Survey of Recent Developments

The polynomial invariants of finite groups have been studied for more than a century now and continue to find new applications and generate interesting problems. In this article we will survey some of the recent developments coming primarily from algebraic topology and the rediscovery of old open problems. It has been almost two decades since the Bulletin of the AMS published the marvelous surv...

متن کامل

on some invariants of finite groups

in this note we are going to survey several invariants of finite groups related either to their orders or to generating sets or to lattices of subgroups. some relations among these invariants will be exhibited. special attention will be paid to monotonicity of them.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Computation

سال: 2001

ISSN: 0025-5718

DOI: 10.1090/s0025-5718-01-01405-3